

(本试剂盒仅供体外研究使用,不用于临床诊断!)

还原型谷胱甘肽和氧化型谷胱甘肽测定试剂盒 Reduced Glutathione & Oxidized Glutathione (GSH & GSSG) Assay Kit

产品货号: BC00027

产品规格: 100T

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

□ 回邮箱 (销售) order@enkilife.cn □ 回邮箱 (技术支持) tech@enkilife.cn □ 027-87002838

订阅微信公众号 获取更多技术 信息及前沿动态

保质期:请见试剂盒外包装标签。

技术支持: 为了更好地给您提供服务, 联系时请告知产品外包装标签上批号。

基本信息

产品中文名称	还原型谷胱甘肽和氧化型谷胱甘肽测定试剂盒
产品英文名称	Reduced Glutathione & Oxidized Glutathione (GSH & GSSG) Assay Kit
检测方法	Colorimetric
样品类型	组织、细胞、血浆
检测类型	Quantitative
检测仪器及波长	酶标仪(405-414 nm,最佳检测波长 412nm)
检测范围	0.5-20μM
灵敏度	0.0494µM

产品简介

本试剂盒可以分别检测出 GSH(还原型谷胱甘肽)和 GSSG(氧化型谷胱甘肽, oxidized glutathione disulfide)含量。谷胱甘肽(glutathione)是一种由 3 个氨基酸残基组成的小肽,全称为谷氨酰-半胱氨酰-甘氨酸,英文名称为 glutamyl-cysteinylglycine,简称为glutathione。由于半胱氨酸上的巯基(SH)为谷胱甘肽的活性基团,所以常简写为 G-SH 或GSH。谷胱甘肽包括还原型谷胱甘肽(reduced glutathione,常称为 GSH)和氧化型谷胱甘肽(oxidized glutathione disulfide)两种形式。由于氧化型谷胱甘肽是由两个 GSH 通过巯基脱氢而成,所以常简写为 G-S-S-G 或 GSSG。还原型谷胱甘肽是绝大多数活细胞中巯基的主要来源,对于维持蛋白质中巯基适当的氧化还原状态有重要作用,并且是动物细胞中关键的抗氧化剂。总谷胱甘肽中通常 90-95%为还原型谷胱甘肽。

产品特点

- ★本试剂盒检测下限为 0.5µM,可以检测动物组织、血浆、红细胞、和培养细胞或其它适 当样品中 GSH 和 GSSG 的含量。
- ★本试剂盒提供了蛋白去除试剂 M,可以更加准确地测定含有蛋白的样品。

检测原理

通过谷胱甘肽还原酶把 GSSG 还原成 GSH, 而 GSH 可以和生色底物 DTNB 反应产生黄色的 TNB 和 GSSG。适当配制反应体系,前后两个反应合并起来后,总谷胱甘肽(GSSG+GSH)就相当于一个颜色产生的限速因素,总谷胱甘肽的量就决定了黄色的 TNB 形成量。从而通过测定 412nm 处的吸光度值就可以计算出总谷胱甘肽的量。用适当试剂先清除样品中的 GSH, 然后利用上述反应原理就可以测定出 GSSG 的含量。用总谷胱甘肽(GSSG+GSH)的量扣除 GSSG 的含量,就可以计算出 GSH 的含量。

本试剂盒的具体反应原理如下:

$$2GSH + DTNB \rightarrow GSSG + 2TNB$$

NADPH + H⁺ + GSSG \xrightarrow{GR} NADP⁺ + 2GSH

两个反应相合并:

$$NADPH + H^+ + DTNB \xrightarrow{GR} NADP^+ + 2TNB$$

产品组分

/ HH-11/3					
编号	产品名称	包装规格 (100T)	保存方式		
试剂一	总谷胱甘肽检测缓冲液	60ml	-20℃		
试剂二	谷胱甘肽还原酶	150µl	-20°C		
试剂三	氧化型谷胱甘肽(GSSG)	5mg	-20℃,GSSG 配制成溶液,分装,-20℃ 保存至少 3 个月有效		
试剂四	DTNB	4.5mg	-20℃, DTNB 溶解于 DMSO 后, 分装, -20℃ 保存至少 3 个月有效。		
试剂五	蛋白去除试剂 M	1g	-20℃,蛋白去除试剂 M 配制成溶液后仅 限当天使用。		
试剂六	NADPH	4mg	-20℃, NADPH 溶解, 分装, -70℃ 保		
试剂七	DMSO	1.5ml	-20°C		
试剂八	GSH 清除试剂	500µl	-20℃,GSH 清除试剂溶液须新鲜配制使用。		

耗材一	96 孔酶标板	1 板	RT
耗材二	96 孔覆膜	2 张	RT

保存条件

未拆封的试剂盒可在 -20℃保存 12 个月。

实验前准备

• 样品处理

- 1. 组织样品的准备。取组织用液氮速冻,然后研成粉末。每 10 毫克研碎的组织粉末,加入 30 微升蛋白去除试剂 M 溶液,充分 Vortex。再加入 70 微升蛋白去除试剂 M 溶液,用 玻璃匀浆器充分匀浆(对于比较容易匀浆的组织可以不用液氮速冻等处理,而直接加入适量蛋白去除试剂 M 溶液进行匀浆)。4°C 放置 10 分钟后,10,000g 4°C 离心 10 分钟,取上清用于总谷胱甘肽的测定。样品需暂时 4°C 保存,不立即测定的样品可以-70°C 保存,但不宜超过 10 天。对于处理好的组织样品通常需用蛋白去除试剂 M 溶液进行适当稀释后再进行测定,稀释倍数通常为 5-20 倍。
- 2. 细胞样品的准备。请尽量使用新鲜的细胞进行测定,而不要使用冻存的细胞进行测定。 PBS 洗涤细胞一次,离心收集细胞,吸尽上清。加入细胞沉淀体积 3 倍量的蛋白去除试剂 M 溶液,即如果细胞沉淀为 10 微升,则加入 30 微升蛋白去除试剂 M 溶液,充分 Vortex。(细胞沉淀的体积可以根据细胞沉淀的重量进行估算。收集细胞前后分别对离心管进行称重,从而就可以计算出细胞沉淀的重量。10 毫克细胞沉淀的体积可以粗略地看做 10 微升。)然后利用液氮和 37°C 水浴对样品进行两次快速的冻融。4°C 或冰浴放置 5 分钟。4°C,10,000g 离心 10 分钟。取上清用于总谷胱甘肽的测定。样品需暂时 4°C 保存,不立即测定的样品可以-70°C 保存,但不宜超过 10 天。对于处理好的细胞样品通常需用蛋白去除试剂 M 溶液进行适当稀释后再进行测定,稀释倍数可以高达 20 倍。
- 3. 红细胞或血浆样品的准备。请尽量使用新鲜的血液进行测定。600g 离心 10 分钟,沉淀为红细胞,上清为血浆。对于红细胞,用 PBS 洗涤两次。取约 50 微升红细胞沉淀或血浆,加入 50 微升蛋白去除试剂 M 溶液,充分 Vortex。4°C 或冰浴放置 10 分钟。4°C,10,000g 离心 10 分钟。取上清用于总谷胱甘肽的测定。样品需暂时 4°C 保存,不立即

测定的样品可以-70°C 保存,但不宜超过 10 天。对于处理好的红细胞样品最后需用蛋白去除试剂 M 溶液稀释 10 倍后再进行后续的测定,而对于血浆样品,应直接取 10 微升进行测定。

- 4. 说明: 对于一些谷胱甘肽含量特别低的样品,可以通过冷冻干燥进行浓缩后再进行测定。
- 5. **待测 GSSG 含量样品的准备**: 取部分上述准备好的待测总谷胱甘肽含量的样品,按照每 100 微升样品加入 4 微升 GSH 清除试剂工作液的比例加入 GSH 清除工作液,立即vortex 混匀, 25°C 反应 60 分钟。 通过上述反应可以清除高达 50 pu M 的 GSH,如果样品中 GSH 含量过高需进行适当稀释后再进行去除 GSH 的操作。通过上述处理就可以用于后续的测定。

• 试剂盒的准备工作

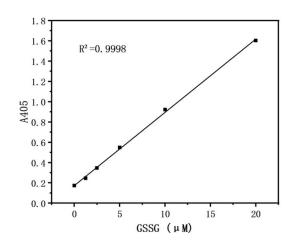
- 1. GSSG 储备液的配制: 在本试剂盒提供的 5mg GSSG 中加入 816 微升 Milli-Q 级纯水, 溶解并混匀,即为 GSSG 储备液,浓度为 10mM。除立即待用部分外,其余 GSSG 储备 液适当分装后-20°C 保存。
- 2. DTNB 储备液的配制: 在本试剂盒提供的 4.5mg DTNB 中加入 1.5 毫升本试剂盒提供的 DMSO, 溶解并混匀, 即为 DTNB 储备液。除立即待用部分外, 其余 DTNB 储备液适当 分装后-20°C 避光保存。
- 3. 蛋白去除试剂 M 溶液的配制: 称取 0.2 克蛋白去除试剂 M, 加入 4 毫升总谷胱甘肽检测缓冲液, 配制成 4 毫升 5%的水溶液。蛋白去除试剂 M 溶液必须新鲜配制并限当天使用。
- 4. NADPH 储备液(40mg/ml)的配制:在本试剂盒提供的 4mg NADPH 中加入 100 微升 Milli-Q 级纯水,溶解并混匀,即为 NADPH 储备液。除立即待用部分外,其余 NADPH 储备液适当分装后-70°C 保存。
- 5. 5 倍稀释谷胱甘肽还原酶的配制:取 50 微升谷胱甘肽还原酶,加入 200 微升总谷胱甘肽检测缓冲液,混匀,即成 5 倍稀释的谷胱甘肽还原酶。
- 6. 总谷胱甘肽检测工作液的配制:根据待检测的样品数参考下表配制适当量的总谷胱甘肽检测工作液,表中三种试剂按比例混合后即为总谷胱甘肽检测工作液。

	1 个样品	10 个样品	20 个样品
5 倍稀释谷胱甘肽还原酶	6.6 µl	66 µl	132 µl
DTNB 储备液	6.6 µl	66 µl	132 µl
总谷胱甘肽检测缓冲液	150 µl	1.5 ml	3 ml

- 7. 0.5mg/ml NADPH 的配制: 取 10 微升 NADPH 储备液,加入 790 微升总谷胱甘肽检测缓冲液,混匀即为 0.5mg/ml NADPH。每检测一个样品需 50 微升 0.5mg/ml NADPH。
- 8. GSH 清除试剂工作液的配制: 10.8 微升 GSH 清除试剂中加入 89.2 微升无水乙醇, 立即混匀。GSH 清除剂工作液每次也须新鲜配制。
- 9. 标准品的准备:
- (1) 把 10mM GSSG 储备液用总谷胱甘肽检测缓冲液稀释成 20μM GSSG 溶液。然后依次 稀释成 10、5、2.5、1.25μM GSSG 溶液。取 20、10、5、2.5、1.25μM GSSG 溶液六 个点做标准曲线。
- (2) 用于测定 GSSG 时,标准曲线每个孔需补加 0.4 微升 GSH 清除工作液加入总谷胱甘肽 检测工作液中(即按照每 150 微升总谷胱甘肽检测工作液加入 0.4 微升 GSH 清除试剂 工作液的比例加入 GSH 清除工作液), 立即 vortex 混匀,保持溶液体系与样品一致。

操作流程

1. 参考下表,使用 96 孔板,依次加入样品或标准品,混匀。加入 150 微升总谷胱甘肽检测工作液后,混匀,25°C 或室温孵育 5 分钟。


	空白对照(blank)	标准曲线(standard)	样品(sample)
样品或标准品	0 μΙ	10 μΙ	xμl
蛋白去除试剂 M 溶液	10 μΙ	0 μΙ	10 - x μl
总谷胱甘肽检测工作液	150 µl	150 µl	150 µl
25°C 或室温孵育	5 min	5 min	5 min
0.5mg/ml NADPH	50 µl	50 μl	50 μl

- 2. 加入 50 微升 0.5mg/ml NADPH 溶液,混匀。
- 3. 立即用酶标仪测定 A412, 每 5 分钟测定一次或实时测定,共测定 25 分钟,测得 5 个

数据。**说明**:为了简化实验步骤,可以在加入 NADPH 溶液混匀后 25 分钟,仅测定一次 A412。如果仪器可以设置温度,把温度设置在 25°C,否则就在室温状况下测定。如果酶标仪不能测定 A412,可以测定 405-414nm 附近范围的吸光度。如果标准曲线良好,但样品的吸光度比较低,可以延长孵育时间至 30-60 分钟,标准品和样品的吸光度在一定范围内会随时间的延长接近于线性增加的。

注意: 如果进行 GSSG 含量测定,标准品也须平行地进行去除 GSH 的相关操作,以减小误差。如果样品需同时测定总谷胱甘肽含量和 GSSG 含量,由于两者的检测体系不同,须分别单独做标准曲线。

4. 标准品在加入 NADPH 溶液混匀后 25 分钟后的实测效果参考图

结果计算

- 1. 单点测定法。即反应 25 分钟(或 30-60 分钟)后仅测定一次吸光度。根据不同浓度标准 品测得的不同吸光度作出标准曲线。样品对照标准曲线即可计算出总谷胱甘肽(标准曲线 计算得到的 GSSG 浓度乘以 2)或 GSSG 的含量。实际计算出来的总谷胱甘肽的含量相 当于把氧化型谷胱甘肽的含量乘以 2 再加上还原型谷胱甘肽的含量。单点法测定相对比较便捷,而动力学法测定则相对比较精确。注意:由于 1 个 GSSG 分子反应后可以还原成 2 个 GSH 分子,所以 GSSG 的浓度如果换算成 GSH 的浓度时需乘以 2,例如完全清除样品中内源 GSH 的情况下,GSSG 的浓度为 5μM,则相当于 GSH 的浓度为 10μM。
- 2. 动力学测定法。先根据不同时间点测定得到的吸光度值计算出 ΔA412/min。然后以标准品的浓度为横坐标,以 ΔA412/min 为纵坐标,做出标准曲线。根据样品的 ΔA412/min, 对照标准曲线就可以计算出测定时样品中总谷胱甘肽或 GSSG 的含量。

- 3. 同时根据样品的稀释倍数以及最初样品的使用量,可以计算出每毫克组织或细胞中的总谷胱甘肽或 GSSG 的含量。对于细胞样品,也可以根据最初细胞的使用数量,然后另外取一定数量的细胞裂解后测定蛋白浓度,从而计算出细胞样品的蛋白量,最后计算出每毫克蛋白中总谷胱甘肽或 GSSG 的含量。
- 4. 根据测定得到的总谷胱甘肽的含量和 GSSG 的含量就可以计算出 GSH 的含量。计算公式为: GSH=Total Glutathione-GSSG×2 (注意: Total Glutathione 为通过标准曲线计算得到的 GSSG 浓度乘以 2,同时清除 GSH 后得到的 GSSG 也要乘以 2,因为 1 个 GSSG 分子在反应后可以还原成 2 个 GSH 分子)。例如通过本试剂盒测定的总谷胱甘肽 (Total Glutathione)的浓度是 15μM (即在测定总谷胱甘肽时通过标准曲线计算得到的 GSSG 浓度为 7.5μM,乘以 2 即为总谷胱甘肽浓度),测定的 GSSG 的浓度是 1.2μM (即在单独测定 GSSG 含量时通过标准曲线计算得到的 GSSG 浓度为 1.2μM),那么样品中 GSH 的浓度为 15-1.2×2=12.6μM。

注意事项

- 本试剂盒检测时牵涉到氧化还原反应,所有氧化剂或还原剂都会干扰本试剂盒的测定。
 特别是 DTT、巯基乙醇等含有巯基的试剂会严重干扰本试剂盒的测定,请尽量避免。
- 2. 一定要严格控制反应时的温度和反应时间,否则每次都需做标准曲线。
- 3. NADPH 等试剂不太稳定,要严格按照后续说明操作,谨防失活。
- 4. 蛋白去除试剂 M 溶液必须新鲜配制并限当日使用。GSH 清除试剂也须新鲜稀释后使用。
- 5. 蛋白去除试剂 M 较难溶解,可以通过剧烈 vortex 并适当加热(不超过 37°C)以促进溶解。
- 6. DMSO 在 4°C、冰浴等较低温度情况下会凝固,可以 20-25°C 水浴温育片刻至全部融解后使用。
- 7. 本产品仅限于专业人员的科学研究用,不得用于临床诊断或治疗,不得用于食品或药品, 不得存放于普通住宅内。